GPU Programming with Python

To visualize the results, an empty vector is built:

res np = np.empty like(vector_a)
Then, the result is copied into this vector:

cl.enqueue copy(queue, res_np, res g)
Finally, the results are displayed:

print ("VECTOR LENGTH = %s" %vector_dimension)
print ("INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector_b

print ("OUTPUT VECTOR RESULT A + B ")

print res np

To check the result, we use the assert statement. It tests the result and triggers an error if
the condition is false:

assert (la.norm(res np - (vector_a + vector b))) < le-5

Evaluating element-wise expressions with

PyOpenCli

Similar to PyCUDA, PyOpenCL provides the functionality in the pyopencl.elementwise
class that allows us to evaluate the complicated expressions in a single computational pass.
The method that realized this is:

ElementwiseKernel (context, argument, operation, name,",",",
optional parameters)

Here:
» context: This is the device or the group of devices on which the element-wise

operation will be executed

» argument: This is a C-like argument list of all the parameters involved in the
computation

» operation: This is a string that represents the operation that is to be performed
on the argument list

» name: This is the kernel name associated with ElementwiseKernel

» optional parameters: These are notimportant for this recipe.

248

Chapter 6

How to do it...

In this example, we will again consider the task of adding two integer vectors of 100 elements.
The achievement, of course, changes because we use the ElementwiseKernel class, as
shown:

import pyopencl as cl
import pyopencl.array as cl array
import numpy as np

context = cl.create some context ()
queue = cl.CommandQueue (context)

vector dimension = 100

vector a = cl array.to device(queue, np.random.randint (vector
dimension, size=vector dimension))

vector b = cl array.to device(queue, np.random.randint (vector
dimension, size=vector dimension))

result vector = cl array.empty like (vector a)

elementwiseSum = cl.elementwise.ElementwiseKernel (context, "int *a,
int *b, int *c¢", "c[i] = ali] + b[i]l", "sum")
elementwiseSum(vector a, vector b, result vector)

print ("PyOpenCL ELEMENTWISE SUM OF TWO VECTORS")
print ("VECTOR LENGTH = %s" %$vector dimension)
print ("INPUT VECTOR A")

print vector_a

print ("INPUT VECTOR B")

print vector b

print ("OUTPUT VECTOR RESULT A + B ")

print result vector

The output of this code is as follows:

C:\Python CookBook\Chapter 6 - GPU Programming with Python\>python
PyOpenCLElementwise.py

Choose platform:

[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>
[1] <pyopencl.Platform 'Intel (R) OpenCL' at 0x3cf440>
Choice [0]:0

Set the environment variable PYOPENCL CTX='0' to avoid being asked again.

249

GPU Programming with Python

PyOpenCL ELEMENTWISE SUM OF TWO VECTORS
VECTOR LENGTH = 100
INPUT VECTOR A

[70 95 47 53 71 52 15 10 95 5 76 40 55 87 7 18 44 72 2 42 47 86 58 87
64 79 44 94 5 54 92 21 60 67 43 92 38 49 97 14 17 35 87 94 3 17 87 24
50 43 39 71 84 7 64 60 29 74 65 82 42 35 96 80 94 57 21 56 94 8 3 94
30 64 44 34 79 5 88 80 98 88 5 2 77 57 7 93 49 42 56 19 81 36 19 24
27 18 1 40]

INPUT VECTOR B

[82 32 72 9 29 29 92 2 20 44 31 91 63 97 86 37 39 41 19 78 60 30 21 69
29 38 56 49 97 18 44 84 27 73 73 14 67 43 17 58 81 52 89 84 80 96 58 80
20 91 20 61 92 46 34 98 21 82 52 34 81 45 35 28 23 59 21 89 47 75 49 43
92 91 84 59 35 61 42 12 69 15 98 85 12 36 64 89 76 29 8 81 62 5 58 13
46 82 12 66]

OUTPUT VECTOR RESULT A + B
[152 127 119 62 100 81 107 12 115 49 107 131 118 184 93 55 83 113
21 120 107 116 79 156 93 117 100 143 102 72 136 105 87 140 116 106
105 92 114 72 98 87 176 178 83 113 145 104 70 134 59 132 176 53
98 158 50 156 117 116 123 80 131 108 117 116 42 145 141 83 52 137
122 155 128 93 114 66 130 92 167 103 103 87 89 93 71 182 125 171
64 100 143 41 77 37 73 100 13 106]

In the first line of the script, we import all the requested modules:

import pyopencl as cl
import pyopencl.array as cl array
import numpy

To initialize the context, we use the cl.create some context () method. It asks the user
which context must be used to perform the calculation:

Choose platform:
[0] <pyopencl.Platform 'NVIDIA CUDA' at 0x2cc6c40>
[1] <pyopencl.Platform 'Intel (R) OpenCL' at 0x3cf440>

Then, we instantiate the queue that will receive ElementwiseKernel:

queue = cl.CommandQueue (context)

250

Chapter 6
The input vectors and the result vector are instantiated:

vector_dimension = 100

vector a = cl array.to_device(queue, np.random.randint (vector
dimension, size=vector dimension))

vector b = cl array.to_device(queue, np.random.randint (vector
dimension, size=vector_ dimension))

result vector = cl_array.empty like (vector a)

The input vectors vector a and vector_b are integer vectors of random values that are
obtained using the NumPy's random. radint function. The inputs vectors are defined and
copied into the device using the PyOpenCL statement:

cl.array to_device(queue,array)

Finally, the ElementwiseKernel object is created:

elementwiseSum = cl.elementwise.ElementwiseKernel (context, "int *a,
int *b, int *c¢", "c[i] = ali] + b[i]l", "sum")
In this code:

» All the arguments are in the form of a string formatted as a C argument list (they are
all integers)

» Asnippet of C carries out the operation, which is the sum of the vector components
» The function's name is used to compile the kernel "*s

Then, we can call the elementwiseSum function with the arguments defined previously:
elementwiseSum(vector a, vector b, result vector)
The example ends by printing the input vectors and the result is obtained:

print vector_a
print vector_b
print result vector

In this chapter, we comparatively tested the performance between a CPU and GPU. Before you
begin the study of the performance of algorithms, it is important to keep in mind the platform
of execution on which the tests were conducted. In fact, the specific characteristics of these
systems interfere with the computational time and they represent an aspect of primary
importance.

251

GPU Programming with Python

To perform the tests, we used the following machines

» GPU: GeForce GT 240
» CPU: Intel Core2 Duo 2.33 Ghz
» RAM: DDR2 4 Gb

How to do it...

In this test, the computation time of a simple mathematical operation, that is, the sum of two
vectors with elements expressed in a floating point will be evaluated and compared. To make
a comparison, the same operation was implemented in two separate functions.

The first one uses only the CPU, while the second is written using PyOpenCL and makes use
of the GPU for calculation. The test is performed on vectors of a dimension equal to 10,000
elements.

The code for this is as follows:

from time import time # Import time tools

import pyopencl as cl

import numpy as np

import PyOpeClDeviceInfo as device info
import numpy.linalg as la

#input vectors
a = np.random.rand (10000) .astype (np.float32)
b = np.random.rand(10000) .astype (np.float32)

def test cpu vector sum(a, b):
c_cpu = np.empty like(a)
cpu_start _time = time ()
for i in range(10000) :
for j in range(10000) :
c_cpuli]l = al[i]l + b[i]
cpu_end time = time ()
print ("CPU Time: {0} s".format(cpu end time - cpu start time))
return c_cpu

def test gpu vector sum(a, b):
#define the PyOpenCL Context
platform = cl.get platforms () [0]
device = platform.get devices() [0]
context = cl.Context ([device])

252

Chapter 6

queue = cl.CommandQueue (context, \

properties=cl.command queue properties.PROFILING
ENABLE)

#prepare the data structure
cl.Buffer\

(context, \

cl.mem_flags.READ ONLY \

| cl.mem flags.COPY HOST PTR, hostbuf=a)
b buffer = cl.Buffer)\

(context, \

cl.mem_flags.READ ONLY \

| cl.mem flags.COPY HOST PTR, hostbuf=b)
cl.Buffer\

(context, \

cl.mem flags.WRITE ONLY, b.nbytes)
program = cl.Program(context, """

a_buffer

c _buffer

__kernel void sum(_ global const float *a,
__global const float *b,
__global float *c)

int i = get global id(0);

int j;
for(§ = 0; j§ < 10000; j++)
{
clil = alil + blil;
}
}""").build()

#start the gpu test
gpu_start time = time()
event = program.sum(queue, a.shape, None, \

a _buffer, b buffer, c buffer)
event.wait ()
elapsed = le-9* (event.profile.end - event.profile.start)
print ("GPU Kernel evaluation Time: {0} s".format (elapsed))
c _gpu = np.empty like(a)
cl.enqueue read buffer(queue, c buffer, c gpu).wait ()
gpu_end time = time()
print ("GPU Time: {0} s".format(gpu end time - gpu start time))
return c_gpu

#start the test
if name == " main ":

#print the device info

253

GPU Programming with Python

device info.print device info()
#call the test on the cpu

cpu result = test cpu vector sum(a, b)

#call the test on the gpu

gpu_result = test gpu vector sum(a, b)

#

assert (la.norm(cpu result - gpu result)) < le-5

The output of the test is as follows, where the device information with the execution time is
printed out:

C:\Python Cook\Chapter 6 - GPU Programming with Python\Chapter 6 -
codes>python PyOpenCLTestApplication.py

Platform - Name: NVIDIA CUDA
Platform - Vendor: NVIDIA Corporation
Platform - Version: OpenCL 1.1 CUDA 6.0.1
Platform - Profile: FULL PROFILE
Device - Name: GeForce GT 240
Device - Type: GPU
Device - Max Clock Speed: 1340 Mhz
Device - Compute Units: 12
Device - Local Memory: 16 KB
Device - Constant Memory: 64 KB
Device - Global Memory: 1 GB
Device - Max Buffer/Image Size: 256 MB
Device - Max Work Group Size: 512

Platform - Name: Intel(R) OpenCL

Platform - Vendor: Intel(R) Corporation

Platform - Version: OpenCL 1.2

Platform - Profile: FULL PROFILE
Device - Name: Intel(R) Core(TM)2 Duo CPU E6550 @ 2.33GHz
Device - Type: CPU

Chapter 6

Device - Max Clock Speed: 2330 Mhz
Device - Compute Units: 2

Device - Local Memory: 32 KB

Device - Constant Memory: 128 KB
Device - Global Memory: 2 GB

Device - Max Buffer/Image Size: 512 MB

Device - Max Work Group Size: 8192

CPU Time: 71.9769999981 s
GPU Kernel Time: 0.075756608 s
GPU Time: 0.0809998512268 s

Even if the test is not computationally expansive, it provides useful indications of the potential
of a GPU card.

As explained in the preceding section, the test consists of two parts. The code that runs on
the CPU and the code that runs on the GPU. Both were taken to the execution time.

Regarding the test on the CPU, the test _cpu_vector sum function has been implemented.
It consists of two loops on 10,000 vectors elements:

cpu_start time = time()
for i in range(10000) :
for j in range(10000) :
c_cpuli]l = al[i]l + b[i]
cpu _end time = time()

The sum operation of the ith vector components is executed 1,000,000,000 times, and it will
be computationally expensive.

The total CPU time will have the following difference:
CPU Time = cpu end time - cpu start time

To test the GPU time, we implemented the regular definition schema of an application for
PyOpenCL:

» We established the definition of the device and context

» We set up the queue for execution

255

GPU Programming with Python

» We created memory areas to perform the computation on the device (three buffers
defined as a_buffer,b buffer, c_buffer)

» We built the kernel
» We evaluated the kernel call and GPU time:

gpu_start_time = time()
event = program.sum(queue, a.shape, None, \
a_buffer, b buffer, c buffer)

cl.enqueue read buffer(queue, c_buffer, c _gpu).wait ()
gpu_end time = time()

Here, GPU Time = gpu end time - gpu start time.

Finally, in the main program we call the testing function and print device info () that we
defined previously:

if __name_ == "_main_ ":
device info.print device info()
cpu_result = test cpu vector sum(a, b)
gpu_result = test gpu vector sum(a, b)
assert (la.norm(cpu result - gpu result)) < le-5

To check the result, we used the assert statement that verifies the result and triggers an
error if the condition is false.

256

